LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Design of Saline Gel Coil for Inner Heating of Electrolyte Solution and Liquid Foods under Induced Electric Field

Photo by thkelley from unsplash

As an emerging electrotechnology, induced electric field has attracted extensive attention in the development of innovative heat treatment equipment. In this study, a resistance heating unit based on induced electric… Click to show full abstract

As an emerging electrotechnology, induced electric field has attracted extensive attention in the development of innovative heat treatment equipment. In this study, a resistance heating unit based on induced electric field was built for inner heating of aqueous electrolyte solutions as well as liquid foods, such as vinegar. NaCl solutions and liquid foods with different conductivity were used to investigate the thermal effect and temperature rise of samples. Saline gel composed of 3% agar powder and 20% NaCl acted as a coil of conductor for inducing high-level output voltage. The utilization of the saline gel coil significantly improved the power conversion efficiency of the heating unit as well as the heating rate. The results revealed that duty cycle and applied frequency had immediate impact on the efficiency of inner heating. Additionally, the rate of temperature rise was proportional to the conductivity of the sample. The temperature of 200 mL NaCl solution (0.6%) increased from 25 °C to 100 °C in 3 min at 40% duty cycle and 60 kHz of applied frequency, and it was a circulating-flow process. The maximum temperature rise of black vinegar was 39.6 °C in 15 s at 60 kHz and 60% duty cycle, while that of white vinegar was 32.2 °C in 30 s under same conditions, whereas it was a continuous-flow process. This novel heating system has realized the inner heating of liquid samples.

Keywords: induced electric; inner heating; saline gel; liquid foods; electric field

Journal Title: Foods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.