Emulsion gel, a novel oral delivery carrier, provides the possibility to co-load hydrophilic and lipophilic nutrients simultaneously. In this study, duo-induction methods of laccase and glucono-δ-lactone (L&GDL) or laccase and… Click to show full abstract
Emulsion gel, a novel oral delivery carrier, provides the possibility to co-load hydrophilic and lipophilic nutrients simultaneously. In this study, duo-induction methods of laccase and glucono-δ-lactone (L&GDL) or laccase and transglutaminase (L&MTG) were used to prepare the soy protein isolate-sugar beet pectin (SPI-SBP) emulsion gel. The textural data of the emulsion gel was normalized to analyze the effect of different induction methods on the gel property of the SPI-SBP emulsion gels. The characterization studies showed the structure of L&MTG emulsion gel was denser with a lower swelling ratio and reduced degree of digestion, compared with L&GDL emulsion gel. Moreover, the release profiles of both β-carotene and riboflavin co-loaded in the SPI-SBP emulsion gels were correlated to the digestion patterns of the gel matrix; the controlled-release of encapsulated functional factors was regulated by a gel network induced by different induction methods, mainly due to the resulting porosity of the structure and swelling ratio during digestion. In conclusion, SPI-SBP emulsion gels have the capability of encapsulating multiple functional factors with different physicochemical properties.
               
Click one of the above tabs to view related content.