LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Dietary Postbiotics Reduce Cytotoxicity and Inflammation Induced by Crystalline Silica in an In Vitro RAW 264.7 Macrophage Model

Photo from wikipedia

Crystalline silica (cSiO2) particles are naturally existing environmental toxicants. Exposure to cSiO2 could cause local or systemic inflammation and aggregate inflammation-associated diseases. Dietary postbiotics are reported to possess anti-inflammatory activities;… Click to show full abstract

Crystalline silica (cSiO2) particles are naturally existing environmental toxicants. Exposure to cSiO2 could cause local or systemic inflammation and aggregate inflammation-associated diseases. Dietary postbiotics are reported to possess anti-inflammatory activities; however, their effects on cSiO2-triggered inflammation are unknown. Here, we investigate the impact of postbiotics from Lacticaseibacillus rhamnosus (LGG), Limosilactobacillus reuteri (L.reu), and Bifidobacterium animalis subsp. lactis Bb12 (BB12) on cSiO2-induced cytotoxicity and IL-1 cytokines in vitro using macrophages. The postbiotics used in this study were cell-free fractions of a probiotic growth medium collected at different time points. The in vitro model used was the wild-type murine macrophage RAW 264.7 cell line stably transfected with the inflammasome adapter protein, ASC. Our results indicate that all the postbiotics could reduce cSiO2-induced cytotoxicity in the wild-type and ASC macrophages and the effects were OD-dependent. Following priming with a lipopolysaccharide, cSiO2 treatment resulted in robust inflammasome activation in ASC, as reflected by the IL-1β release. These responses were minimal or absent in the wild-type RAW cells. All the postbiotics decreased the release of IL-1β from ASC; however, only LGG and BB12 reduced the IL-1β secretion from wild-type cells. Only the L.reu postbiotics reduced the IL-1α release from ASC. We conclude that the postbiotics from LGG, BB12, and L.reu can protect macrophages against cSiO2-induced cytotoxicity and suppress IL-1β activation.

Keywords: crystalline silica; inflammation; cytotoxicity; csio2; dietary postbiotics; wild type

Journal Title: Foods
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.