Thermal processing of packaged fruit and vegetable products is targeted at eliminating microbial contaminants (related to spoilage or pathogenicity) and extending shelf life using microbial inactivation or/and by reducing enzymatic… Click to show full abstract
Thermal processing of packaged fruit and vegetable products is targeted at eliminating microbial contaminants (related to spoilage or pathogenicity) and extending shelf life using microbial inactivation or/and by reducing enzymatic activity in the food. The conventional process of thermal processing involves sterilization (canning and retorting) and pasteurization. The parameters used to design the thermal processing regime depend on the time (minutes) required to eliminate a known population of bacteria in a given food matrix under specified conditions. However, due to the effect of thermal exposure on the sensitive nutrients such as vitamins or bioactive compounds present in fruits and vegetables, alternative technologies and their combinations are required to minimize nutrient loss. The novel moderate thermal regimes aim to eliminate bacterial contaminants while retaining nutritional quality. This review focuses on the “thermal” processing regimes for fruit and vegetable products, including conventional sterilization and pasteurization as well as mild to moderate thermal techniques such as pressure-assisted thermal sterilization (PATS), microwave-assisted thermal sterilization (MATS) and pulsed electric field (PEF) in combination with thermal treatment as a hurdle approach or a combined regime.
               
Click one of the above tabs to view related content.