Ferritin, as an iron storage protein, regulates iron metabolism and delivers bioactive substances. It has been regarded as a safe, new type of natural iron supplement, with high bioavailability. In… Click to show full abstract
Ferritin, as an iron storage protein, regulates iron metabolism and delivers bioactive substances. It has been regarded as a safe, new type of natural iron supplement, with high bioavailability. In this paper, we extracted and purified ferritin from northern pike liver (NPLF). The aggregation stabilities, assemble properties, and structural changes in NPLF were investigated using electrophoresis, dynamic light scattering (DLS), circular dichroism (CD), UV–Visible absorption spectroscopy, fluorescence spectroscopy, and transmission electron microscopy (TEM) under various thermal treatments. The solubility, iron concentration, and monodispersity of NPLF all decreased as the temperature increased, and macromolecular aggregates developed. At 60 °C and 70 °C, the α-helix content of ferritin was greater. The content of α-helix were reduced to 8.10% and 1.90% at 90 °C and 100 °C, respectively, indicating the protein structure became loose and lost its self-assembly ability. Furthermore, when treated below 80 °C, NPLF maintained a complete cage-like shape, according to the microstructure. Partially unfolded structures reassembled into tiny aggregates at 80 °C. These findings suggest that mild thermal treatment (80 °C) might inhibit ferritin aggregation while leaving its self-assembly capacity unaffected. Thus, this study provides a theoretical basis for the processing and use of NPLF.
               
Click one of the above tabs to view related content.