Prinsepia utilis Royle (P. utilis) is commonly used as a food ingredient and herbal medicine according to folk records, yet little research has been done on the seed shell, a… Click to show full abstract
Prinsepia utilis Royle (P. utilis) is commonly used as a food ingredient and herbal medicine according to folk records, yet little research has been done on the seed shell, a processing waste. The aim of this study was to investigate the distribution of polyphenolic components and the tyrosinase activation activity of different extracts from the seed shell by UHPLC-ESI-HRMS/MS, in vitro tyrosinase activity assay, molecular docking and molecular dynamics. A total of 16 phytochemicals were identified, of which (+)-catechin and (−)-epicatechin were the major polyphenolic compounds. Both the esterified and insoluble bound polyphenols exhibited tyrosinase activation activity, and the esterified polyphenols showed better tyrosinase activation activity. (+)-Catechin and (−)-epicatechin might be the main activators of tyrosinase, both of which may act as substrate to affect tyrosinase activity. By molecular docking and molecular dynamics simulation studies, (+)-catechin and (−)-epicatechin can be efficiently and stably bound to the tyrosinase active site through hydrogen bonds, van der Waals forces and π-bonds. The results of this study may not only provide a scientific basis for exploring P. utilis seed shell as a potential activator of tyrosinase, but also contribute to the high value utilization of P. utilis processing by-products.
               
Click one of the above tabs to view related content.