First Nations (FN) communities have traditionally used smoke to preserve fish for food security purposes. In this study, an assessment of chemical and microbiological food safety, together with nutritional quality,… Click to show full abstract
First Nations (FN) communities have traditionally used smoke to preserve fish for food security purposes. In this study, an assessment of chemical and microbiological food safety, together with nutritional quality, was conducted on fish preserved using traditional smoke processing. High-molecular-weight polycyclic aromatic hydrocarbons (PAH) residues accounted for only 0.6% of the total PAH in traditionally fully smoked salmon, and Benzo(a)pyrene (B(a)P) was not detected in the FN smoked or commercial smoked fish, respectively. The antimicrobial activity of the solvent extracts derived from smoked fish towards Listeria innocua was very low but detectable. The practice of using full and half-smoked processing for fish reduced all of the fatty acid concentrations and also minimized the further loss of essential omega-3 fatty acids to a greater extent than non-smoked fish during storage (p < 0.05). This finding corresponded to lower (p < 0.05) lipid oxidation in smoked fish. We conclude that the benefits of reducing lipid oxidation and retaining essential fatty acids during storage, together with a potentially significant reduction in Listeria contamination, are notable benefits of traditional smoke processing. Although B(a)P was not detected in FN smoked fish, attention should be given to controlling the temperature and smoking period applied during this processing to minimize potential long-term risks associated with PAH exposure.
               
Click one of the above tabs to view related content.