Okra has received extensive attention due to its high nutritional value and remarkable functional characteristics, but postharvest diseases have severely limited its application. It is important to further explore the… Click to show full abstract
Okra has received extensive attention due to its high nutritional value and remarkable functional characteristics, but postharvest diseases have severely limited its application. It is important to further explore the methods and potential methods to control the postharvest diseases of okra. In this study, Colletotrichum fioriniae is the major pathogen that causes okra anthracnose, which can be isolated from naturally decaying okra. The pathogenicity of C. fioriniae against okra was preliminarily verified, and the related biological characteristics were explored. At the same time, an observational study was conducted to investigate the in vitro antifungal effect of thymol edible coating (TKL) on C. fioriniae. After culturing at 28 °C for 5 days, it was found that TKL showed an obvious growth inhibition effect on C. fioriniae. The concentration for 50% of the maximal effect was 95.10 mg/L, and the minimum inhibitory concentration was 1000 mg/L. In addition, it was found that thymol edible coating with a thymol concentration of 100 mg/L (TKL100) may cause different degrees of damage to the cell membrane, cell wall, and metabolism of C. fioriniae, thereby inhibiting the growth of hyphae and causing hyphal rupture. Refer to the results of the in vitro bacteriostatic experiment. Furthermore, the okra was sprayed with TKL100. It was found that the TKL100 coating could significantly inhibit the infection of C. fioriniae to okra, reduce the rate of brown spots and fold on the okra surface, and inhibit mycelium growth. In addition, the contents of total phenols and flavonoids of okra treated with TKL100 were higher than those of the control group. Meanwhile, the activities of phenylalaninammo-nialyase, cinnamic acid-4-hydroxylase, and 4-coumarate-CoA ligase in the lignin synthesis pathway were generally increased, especially after 6 days in a 28 °C incubator. The lignin content of TKL-W was the highest, reaching 65.62 ± 0.68 mg/g, which was 2.24 times of that of CK-W. Therefore, TKL may promote the synthesis of total phenols and flavonoids in okra, then stimulate the activity of key enzymes in the lignin synthesis pathway, and finally regulate the synthesis of lignin in okra. Thus, TKL could have a certain controlling effect on okra anthracnose.
               
Click one of the above tabs to view related content.