LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Encapsulation Properties of Mentha piperita Leaf Extracts Prepared Using an Ultrasound-Assisted Double Emulsion Method

Photo by briangarrityphoto from unsplash

Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types… Click to show full abstract

Double emulsions (W1/O/W2) have long been used in the food and pharmaceutical industries to encapsulate hydrophobic and hydrophilic drugs and bioactive compounds. This study investigated the effect of different types of emulsifiers (plant- vs. animal-based proteins) on the encapsulation properties of Mentha piperita leaf extract (MLE) prepared using the double emulsion method. Using response surface methodology, the effect of ultrasound-assisted extraction conditions (amplitude 20–50%; time 10–30 min; ethanol concentration 70–90%) on the total phenolic content (TPC) and antioxidant activity (percent inhibition) of the MLE was studied. MLE under optimized conditions (ethanol concentration 76%; amplitude 39%; time 30 min) had a TPC of 62.83 mg GA equivalents/g and an antioxidant activity of 23.49%. The optimized MLE was encapsulated using soy, pea, and whey protein isolates in two emulsifying conditions: 4065× g/min and 4065× g/30 s. The droplet size, optical images, rheology, and encapsulation efficiency (EE%) of the different encapsulated MLEs were compared. The W1/O/W2 produced at 4065× g/min exhibited a smaller droplet size and higher EE% and viscosity than that prepared at 4065× g/30 s. The higher EE% of soy and pea protein isolates indicated their potential as an effective alternative for bioactive compound encapsulation.

Keywords: encapsulation properties; properties mentha; encapsulation; piperita leaf; mentha piperita; prepared using

Journal Title: Foods
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.