LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Application of Central Composite Design and Superimposition Approach for Optimization of Drying Parameters of Pretreated Cassava Flour

Photo by drown_in_city from unsplash

The primary goals of this study were to identify the influence of temperature and drying time on pretreated cassava flour, as well as the optimal settings for the factors and… Click to show full abstract

The primary goals of this study were to identify the influence of temperature and drying time on pretreated cassava flour, as well as the optimal settings for the factors and to analyze the microstructure of cassava flour. The experiment was designed using the response surface methodology with central composite design and the superimposition approach in order to assess the effect of drying temperature (45.85–74.14 °C) and drying time (3.96–11.03 h) and the optimal drying conditions of the cassava flour investigated. Soaking and blanching were applied as pretreatments to freshly sliced cassava tubers. The value moisture content of cassava flour was between 6.22% and 11.07%, whereas the observed whiteness index in cassava flour ranged from 72.62 to 92.67 in all pretreated cassava flour samples. Through analysis of variance, each drying factor, their interaction, and all squared terms had a substantial impact on moisture content and whiteness index. The optimized values for drying temperature and drying time for each pretreated cassava flour were 70 °C and 10 h, respectively. The microstructure showed a non-gelatinized, relatively homogeneous in size and shape sample with pretreatment soaked in distilled water at room temperature. These study results are relevant to the development of more sustainable cassava flour production.

Keywords: cassava flour; superimposition approach; central composite; pretreated cassava; design superimposition; composite design

Journal Title: Foods
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.