Prunus mume, which is a rosaceous arbor with very high ornamental, edible and medical values, has a distribution that is mainly restricted by low temperature. WRKY transcription factor genes play… Click to show full abstract
Prunus mume, which is a rosaceous arbor with very high ornamental, edible and medical values, has a distribution that is mainly restricted by low temperature. WRKY transcription factor genes play crucial roles in the growth, development, and stress responses of plants. However, the WRKY gene family has not been characterised in P. mume. There were 58 PmWRKYs identified from genome of P. mume. They were anchored onto eight link groups and categorised into three broad groups. The gene structure and motif composition were reasonably conservative in each group. Investigation of gene duplication indicated that nine and seven PmWRKYs were arranged in tandem and segmental duplications, respectively. PmWRKYs were discriminately expressed in different tissues (i.e., roots, stems, leaves, flowers and fruits) in P. mume. The 17 cold-related candidate genes were selected based on RNA-seq data. Further, to investigate the function of PmWRKYs in low temperatures, the expression patterns under artificial cold treatments were analysed. The results showed that the expression levels of the 12 PmWRKYs genes significantly and 5 genes slightly changed in stems. In particular, the expression level of PmWRKY18 was up-regulated after ABA treatment. In addition, the spatiotemporal expression patterns of 17 PmWRKYs were analysed in winter. These results indicated that 17 PmWRKYs were potential transcription factors regulating cold resistance in P. mume.
               
Click one of the above tabs to view related content.