LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

The Caucasian Clover Gene TaMYC2 Responds to Abiotic Stress and Improves Tolerance by Increasing the Activity of Antioxidant Enzymes

Photo by kellysikkema from unsplash

Abiotic stress affects metabolic processes in plants and restricts plant growth and development. In this experiment, Caucasian clover (Trifolium ambiguum M. Bieb.) was used as a material, and the CDS… Click to show full abstract

Abiotic stress affects metabolic processes in plants and restricts plant growth and development. In this experiment, Caucasian clover (Trifolium ambiguum M. Bieb.) was used as a material, and the CDS of TaMYC2, which is involved in regulating the response to abiotic stress, was cloned. The CDS of TaMYC2 was 726 bp in length and encoded 241 amino acids. The protein encoded by TaMYC2 was determined to be unstable, be highly hydrophilic, and contain 23 phosphorylation sites. Subcellular localization results showed that TaMYC2 was localized in the nucleus. TaMYC2 responded to salt, alkali, cold, and drought stress and could be induced by IAA, GA3, and MeJA. By analyzing the gene expression and antioxidant enzyme activity in plants before and after stress, we found that drought and cold stress could induce the expression of TaMYC2 and increase the antioxidant enzyme activity. TaMYC2 could also induce the expression of ROS scavenging-related and stress-responsive genes and increase the activity of antioxidant enzymes, thus improving the ability of plants to resist stress. The results of this experiment provide references for subsequent in-depth exploration of both the function of TaMYC2 in and the molecular mechanism underlying the resistance of Caucasian clover.

Keywords: caucasian clover; stress; abiotic stress; activity; activity antioxidant

Journal Title: Genes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.