LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Tissue-Specific Expression of the Terpene Synthase Family Genes in Rosa chinensis and Effect of Abiotic Stress Conditions

Photo from wikipedia

Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes.… Click to show full abstract

Rose (Rosa chinensis) is one of the most famous ornamental plants worldwide, with a variety of colors and fragrances. Terpene synthases (TPSs) play critical roles in the biosynthesis of terpenes. In this work, we report a comprehensive study on the genome-wide identification and characterization of the TPS family in R. chinensis. We identified 49 TPS genes in the R. chinensis genome, and they were grouped into five subfamilies (TPS-a, TPS-b, TPS-c, TPS-g and TPS-e/f). Phylogenetics, gene structure and conserved motif analyses indicated that the RcTPS genes possessed relatively conserved gene structures and the RcTPS proteins contained relatively conserved motifs. Multiple putative cis-acting elements involved in the stress response were identified in the promoter region of RcTPS genes, suggesting that some could be regulated by stress. The expression profile of RcTPS genes showed that they were predominantly expressed in the petals of open flowers, pistils, leaves and roots. Under osmotic and heat stresses, the expression of most RcTPS genes was upregulated. These data provide a useful foundation for deciphering the functional roles of RcTPS genes during plant growth as well as addressing the link between terpene biosynthesis and abiotic stress responses in roses.

Keywords: family; tps tps; abiotic stress; rosa chinensis; rctps genes; chinensis

Journal Title: Genes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.