LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Analysis of Transcriptomes of Diploid and Tetraploid Miscanthus lutarioriparius under Drought Stress

Photo by elisa_ventur from unsplash

Miscanthus lutarioriparius is a species of bioenergy crop unique to China. It is widely distributed in the south of China with high resistance to drought and salt stress. To date,… Click to show full abstract

Miscanthus lutarioriparius is a species of bioenergy crop unique to China. It is widely distributed in the south of China with high resistance to drought and salt stress. To date, the molecular mechanism of the adaption to drought stress in M. lutarioriparius is little known. In this study, RNA-seq technology was employed to analyze the transcriptome changes of diploid and tetraploid M. lutarioriparius after drought treatment. It was found that the number of differentially expressed genes in diploid M. lutarioriparius was much higher than tetraploid, whereas the tetraploid M. lutarioriparius may require fewer transcriptional changes. While the transcriptional changes in drought-tolerant tetraploid M. lutarioriparius are less than that of diploid, more known drought-tolerant pathways were significantly enriched than drought-sensitive diploid M. lutarioriparius. In addition, many drought-tolerance-related genes were constitutively and highly expressed in tetraploid under either normal condition or drought stress. These results together demonstrated that drought-tolerant tetraploid M. lutarioriparius, on the one hand, may preadapt to drought by constitutively overexpressing a series of drought-tolerant genes and, on the other hand, may adapt to drought by actively inducing other drought-tolerant-related pathways. Overall, this study could deepen our understanding of the molecular mechanism of drought-tolerance in bioenergy plants.

Keywords: miscanthus lutarioriparius; drought; drought stress; lutarioriparius; drought tolerant

Journal Title: Genes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.