LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Co-Expression of ZmVPP1 with ZmNAC111 Confers Robust Drought Resistance in Maize

Photo by enchaxcreative from unsplash

Drought is a primary environmental factor limiting maize production globally. Although transferring a single gene to maize can enhance drought resistance, maize response to water deficit requires further improvement to… Click to show full abstract

Drought is a primary environmental factor limiting maize production globally. Although transferring a single gene to maize can enhance drought resistance, maize response to water deficit requires further improvement to accommodate the steadily intensifying drought events worldwide. Here, we generated dual transgene lines simultaneously overexpressing two drought-resistant genes, ZmVPP1 (encoding a vacuolar-type H+ pyrophosphatase) and ZmNAC111 (encoding a NAM, ATAF, and CUC (NAC)-type transcription factor). Following drought stress, survival rates of the pyramided transgenic seedlings reached 62–66%, while wild-type and single transgene seedling survival rates were 23% and 37–42%, respectively. Maize seedlings co-expressing ZmVPP1 and ZmNAC111 exhibited higher photosynthesis rates, antioxidant enzyme activities, and root-shoot ratios than the wild type, and anthesis-silking intervals were shorter while grain yields were higher under water deficit conditions in field trials. Additionally, RNA-sequencing analysis confirmed that photosynthesis and stress-related metabolic processes were stimulated in the dual transgene plants under drought conditions. The findings in this work illustrate how high co-expression of different drought-related genes can reinforce drought resistance over that of individual transgene lines, providing a path for developing arid climate-adapted elite maize varieties.

Keywords: drought resistance; zmvpp1 zmnac111; resistance maize; resistance

Journal Title: Genes
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.