LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Genetic Screening of Targeted Region on the Chromosome 22q11.2 in Patients with Microtia and Congenital Heart Defect

Photo by freestocks from unsplash

Microtia is a congenital malformation characterized by a small, abnormally shaped auricle (pinna) ranging in severity. Congenital heart defect (CHD) is one of the comorbid anomalies with microtia. However, the… Click to show full abstract

Microtia is a congenital malformation characterized by a small, abnormally shaped auricle (pinna) ranging in severity. Congenital heart defect (CHD) is one of the comorbid anomalies with microtia. However, the genetic basis of the co-existence of microtia and CHD remains unclear. Copy number variations (CNVs) of 22q11.2 contribute significantly to microtia and CHD, respectively, thus suggesting a possible shared genetic cause embedded in this genomic region. In this study, 19 sporadic patients with microtia and CHD, as well as a nuclear family, were enrolled for genetic screening of single nucleotide variations (SNVs) and CNVs in 22q11.2 by target capture sequencing. We detected a total of 105 potential deleterious variations, which were enriched in ear- or heart-development-related genes, including TBX1 and DGCR8. The gene burden analysis also suggested that these genes carry more deleterious mutations in the patients, as well as several other genes associated with cardiac development, such as CLTCL1. Additionally, a microduplication harboring SUSD2 was validated in an independent cohort. This study provides new insights into the underlying mechanisms for the comorbidity of microtia and CHD focusing on chromosome 22q11.2, and suggests that a combination of genetic variations, including SNVs and CNVs, may play a crucial role instead of single gene mutation.

Keywords: patients microtia; microtia chd; congenital heart; heart; microtia congenital; heart defect

Journal Title: Genes
Year Published: 2023

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.