LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

RNA Modification Level Estimation with pulseR

Photo from wikipedia

RNA modifications regulate the complex life of transcripts. An experimental approach called LAIC-seq was developed to characterize modification levels on a transcriptome-wide scale. In this method, the modified and unmodified… Click to show full abstract

RNA modifications regulate the complex life of transcripts. An experimental approach called LAIC-seq was developed to characterize modification levels on a transcriptome-wide scale. In this method, the modified and unmodified molecules are separated using antibodies specific for a given RNA modification (e.g., m6A). In essence, the procedure of biochemical separation yields three fractions: Input, eluate, and supernatent, which are subjected to RNA-seq. In this work, we present a bioinformatics workflow, which starts from RNA-seq data to infer gene-specific modification levels by a statistical model on a transcriptome-wide scale. Our workflow centers around the pulseR package, which was originally developed for the analysis of metabolic labeling experiments. We demonstrate how to analyze data without external normalization (i.e., in the absence of spike-ins), given high efficiency of separation, and how, alternatively, scaling factors can be derived from unmodified spike-ins. Importantly, our workflow provides an estimate of uncertainty of modification levels in terms of confidence intervals for model parameters, such as gene expression and RNA modification levels. We also compare alternative model parametrizations, log-odds, or the proportion of the modified molecules and discuss the pros and cons of each representation. In summary, our workflow is a versatile approach to RNA modification level estimation, which is open to any read-count-based experimental approach.

Keywords: level estimation; modification level; rna modification; modification levels; modification

Journal Title: Genes
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.