LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Differential Screening of Herniated Lumbar Discs Based on Bag of Visual Words Image Classification Using Digital Infrared Thermographic Images

Photo by srz from unsplash

Doctors in primary hospitals can obtain the impression of lumbosacral radiculopathy with a physical exam and need to acquire medical images, such as an expensive MRI, for diagnosis. Then, doctors… Click to show full abstract

Doctors in primary hospitals can obtain the impression of lumbosacral radiculopathy with a physical exam and need to acquire medical images, such as an expensive MRI, for diagnosis. Then, doctors will perform a foraminal root block to the target root for pain control. However, there was insufficient screening medical image examination for precise L5 and S1 lumbosacral radiculopathy, which is most prevalent in the clinical field. Therefore, to perform differential screening of L5 and S1 lumbosacral radiculopathy, the authors applied digital infrared thermographic images (DITI) to the machine learning (ML) algorithm, which is the bag of visual words method. DITI dataset included data from the healthy population and radiculopathy patients with herniated lumbar discs (HLDs) L4/5 and L5/S1. A total of 842 patients were enrolled and the dataset was split into a 7:3 ratio as the training algorithm and test dataset to evaluate model performance. The average accuracy was 0.72 and 0.67, the average precision was 0.71 and 0.77, the average recall was 0.69 and 0.74, and the F1 score was 0.70 and 0.75 for the training and test datasets. Application of the bag of visual words algorithm to DITI classification will aid in the differential screening of lumbosacral radiculopathy and increase the therapeutic effect of primary pain interventions with economical cost.

Keywords: digital infrared; visual words; lumbosacral radiculopathy; infrared thermographic; differential screening; bag visual

Journal Title: Healthcare
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.