(1) Background: The dynamics of hand tremors involve nonrandom and short-term motor patterns (STMPs). This study aimed to (i) identify STMPs in Parkinson’s disease (PD) and physiological resting tremor and… Click to show full abstract
(1) Background: The dynamics of hand tremors involve nonrandom and short-term motor patterns (STMPs). This study aimed to (i) identify STMPs in Parkinson’s disease (PD) and physiological resting tremor and (ii) characterize STMPs by amplitude, persistence, and regularity. (2) Methods: This study included healthy (N = 12, 60.1 ± 5.9 years old) and PD (N = 14, 65 ± 11.54 years old) participants. The signals were collected using a triaxial gyroscope on the dorsal side of the hand during a resting condition. Data were preprocessed and seven features were extracted from each 1 s window with 50% overlap. The STMPs were identified using the clustering technique k-means applied to the data in the two-dimensional space given by t-Distributed Stochastic Neighbor Embedding (t-SNE). The frequency, transition probability, and duration of the STMPs for each group were assessed. All STMP features were averaged across groups. (3) Results: Three STMPs were identified in tremor signals (p < 0.05). STMP 1 was prevalent in the healthy control (HC) subjects, STMP 2 in both groups, and STMP3 in PD. Only the coefficient of variation and complexity differed significantly between groups. (4) Conclusion: These results can help professionals characterize and evaluate tremor severity and treatment efficacy.
               
Click one of the above tabs to view related content.