Medical cyber-physical systems (MCPS) represent a platform through which patient health data are acquired by emergent Internet of Things (IoT) sensors, preprocessed locally, and managed through improved machine intelligence algorithms.… Click to show full abstract
Medical cyber-physical systems (MCPS) represent a platform through which patient health data are acquired by emergent Internet of Things (IoT) sensors, preprocessed locally, and managed through improved machine intelligence algorithms. Wireless medical cyber-physical systems are extensively adopted in the daily practices of medicine, where vast amounts of data are sampled using wireless medical devices and sensors and passed to decision support systems (DSSs). With the development of physical systems incorporating cyber frameworks, cyber threats have far more acute effects, as they are reproduced in the physical environment. Patients’ personal information must be shielded against intrusions to preserve their privacy and confidentiality. Therefore, every bit of information stored in the database needs to be kept safe from intrusion attempts. The IWMCPS proposed in this work takes into account all relevant security concerns. This paper summarizes three years of fieldwork by presenting an IWMCPS framework consisting of several components and subsystems. The IWMCPS architecture is developed, as evidenced by a scenario including applications in the medical sector. Cyber-physical systems are essential to the healthcare sector, and life-critical and context-aware health data are vulnerable to information theft and cyber-okayattacks. Reliability, confidence, security, and transparency are some of the issues that must be addressed in the growing field of MCPS research. To overcome the abovementioned problems, we present an improved wireless medical cyber-physical system (IWMCPS) based on machine learning techniques. The heterogeneity of devices included in these systems (such as mobile devices and body sensor nodes) makes them prone to many attacks. This necessitates effective security solutions for these environments based on deep neural networks for attack detection and classification. The three core elements in the proposed IWMCPS are the communication and monitoring core, the computational and safety core, and the real-time planning and administration of resources. In this study, we evaluated our design with actual patient data against various security attacks, including data modification, denial of service (DoS), and data injection. The IWMCPS method is based on a patient-centric architecture that preserves the end-user’s smartphone device to control data exchange accessibility. The patient health data used in WMCPSs must be well protected and secure in order to overcome cyber-physical threats. Our experimental findings showed that our model attained a high detection accuracy of 92% and a lower computational time of 13 sec with fewer error analyses.
               
Click one of the above tabs to view related content.