The purpose of this study was to compare the impact of velocity-based resistance training (VBRT) and percentage-based resistance training (PBRT) on anaerobic ability, sprint performance, and jumping ability. Eighteen female… Click to show full abstract
The purpose of this study was to compare the impact of velocity-based resistance training (VBRT) and percentage-based resistance training (PBRT) on anaerobic ability, sprint performance, and jumping ability. Eighteen female basketball players from a Sport College were randomly divided into two groups: VBRT (n = 10) and PBRT (n = 8). The six-week intervention consisted of two sessions per week of free-weight back squats with linear periodization from 65% to 95%1RM. In PBRT, the weights lifted were fixed based on 1RM percentage, while in VBRT, the weights were adjusted based on individualized velocity profiles. The T-30m sprint time, relative power of countermovement jump (RP-CMJ), and Wingate test were evaluated. The Wingate test assessed peak power (PP), mean power (MP), fatigue index (FI), maximal velocity (Vmax), and total work (TW). Results showed that VBRT produced a very likely improvement in RP-CMJ, Vmax, PP, and FI (Hedges’ g = 0.55, 0.93, 0.68, 0.53, respectively, p < 0.01). On the other hand, PBRT produced a very likely improvement in MP (Hedges’ g = 0.38) and TW (Hedges’ g = 0.45). Although VBRT showed likely favorable effects in RP-CMJ, PP, and Vmax compared to PBRT (p < 0.05 for interaction effect), PBRT produced greater improvements in MP and TW (p < 0.05 for interaction effect). In conclusion, PBRT may be more effective in maintaining high-power velocity endurance, while VBRT has a greater impact on explosive power adaptations.
               
Click one of the above tabs to view related content.