LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Growth and Tissue Elemental Composition Response of Spinach (Spinacia oleracea) to Hydroponic and Aquaponic Water Quality Conditions

Photo by sigmund from unsplash

Spinach (Spinacia oleracea cv. Carmel) was grown in a conventional glass greenhouse under three different nutrient solution treatments. Lighting and temperature conditions were identical. Six growing systems were used to… Click to show full abstract

Spinach (Spinacia oleracea cv. Carmel) was grown in a conventional glass greenhouse under three different nutrient solution treatments. Lighting and temperature conditions were identical. Six growing systems were used to provide a duplicate trough system for each of these three treatments. Six trials were harvested from each system over a two month time period. Two treatments received hydroponic nutrient inputs, with one treatment at pH 7.0 (referred to as H7) and the other at pH 5.8 (H5), and the third treatment was aquaponic (A7), receiving all of its nutrients from a single fish tank with koi (Cyprinus carpio) except for chelated iron. System pH was regulated by adding K2CO3 to aquaponic systems and KOH to hydroponic systems. Comparisons made between treatments were total yield, leaf surface area, tissue elemental content, and dry weight to fresh weight ratio. Dry weight biomass yield values were not different in pairwise comparisons between treatments (A7 vs. H5: p = 0.59 fresh weight, p = 0.42 dry weight). Similarly, surface area results were not different between treatments. The important comparison was that A7 achieved the same growth as H5, the conventional pH with a complete inorganic nutrient solution, despite unbalanced and less than “ideal” nutrient concentrations in the A7 condition.

Keywords: spinach spinacia; spinacia oleracea; tissue elemental

Journal Title: Horticulturae
Year Published: 2017

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.