In early February 2023, the Omicron subvariant XBB.1.5, also known as “Kraken”, accounted for more than 44% of new COVID-19 cases worldwide, whereas a relatively new Omicron subvariant named CH.1.1,… Click to show full abstract
In early February 2023, the Omicron subvariant XBB.1.5, also known as “Kraken”, accounted for more than 44% of new COVID-19 cases worldwide, whereas a relatively new Omicron subvariant named CH.1.1, deemed “Orthrus”, accounted for less than 6% of new COVID-19 cases during the subsequent weeks. This emerging variant carries a mutation, L452R, previously observed in the highly pathogenic Delta and the highly transmissible BA.4 and BA.5 variants, necessitating a shift to active surveillance to assure adequate preparedness for likely future epidemic peaks. We provide a preliminary understanding of the global distribution of this emerging SARS-CoV-2 variant by combining genomic data with structural molecular modeling. In addition, we shield light on the number of specific point mutations in this lineage that may have functional significance, thereby increasing the risk of disease severity, vaccine resistance, and increased transmission. This variant shared about 73% of the mutations with Omicron-like strains. Our homology modeling analysis revealed that CH.1.1 may have a weakened interaction with ACE2 and that its electrostatic potential surface appears to be more positive than that of the reference ancestral virus. Finally, our phylogenetic analysis revealed that this likely-emerging variant was already cryptically circulating in European countries prior to its first detection, highlighting the importance of having access to whole genome sequences for detecting and controlling emerging viral strains.
               
Click one of the above tabs to view related content.