LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Do Wet-Dry Ratio and Fe-Mn System Affect Oxidation-Reduction Potential Nonlinearly in the Subsurface Wastewater Infiltration Systems?

Photo from wikipedia

To understand characteristics of on-line oxidation-reduction potential (ORP) in a subsurface wastewater infiltration system (SWIS) under different intermittent influent conditions, ORP among five matrix depths at wet-dry ratios (Rwds) of… Click to show full abstract

To understand characteristics of on-line oxidation-reduction potential (ORP) in a subsurface wastewater infiltration system (SWIS) under different intermittent influent conditions, ORP among five matrix depths at wet-dry ratios (Rwds) of 2:1, 1:1 and 1:2 with a hydraulic load of 0.10 m3·(m2·d)−1 were monitored. Results showed that the optimal Rwd for the SWIS was 1:1. In that case, ORP at 40 and 65 cm depths changed significantly, by 529 mV and 261 mV, respectively, from the inflow period to the dry period, which was conducive to the recovery of the oxidation environment. It was concluded that ORP varied nonlinearly in strongly aerobic and hypoxic environment. Wastewater was fed into the SWIS at 80 cm and dissolved oxygen diffused at the initial period of one cycle. As a consequence, ORP at 65 cm increased with water content increasing. However, ORP at 40 and 95 cm displayed inverse trends. Moreover, results showed that ORP decreased with Fe2+ and Mn2+ increasing under aerobic conditions (p < 0.05) because Fe2+ and Mn2+ moved with wastewater flow. Effluent met reuse requirements and no clogging was found in the SWIS during the operation.

Keywords: oxidation; reduction potential; subsurface wastewater; wet dry; oxidation reduction; wastewater infiltration

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2018

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.