LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Silicon Amendment Reduces Soil Cd Availability and Cd Uptake of Two Pennisetum Species

Photo from wikipedia

Silicon (Si) plays important roles in alleviating heavy metal stress, but the migrating effects and mechanisms, especially for Pennisetum, are not well studied. In this study, Pennisetum glaucum and Pennisetum… Click to show full abstract

Silicon (Si) plays important roles in alleviating heavy metal stress, but the migrating effects and mechanisms, especially for Pennisetum, are not well studied. In this study, Pennisetum glaucum and Pennisetum glaucum × P. purpureum were used to explore the impacts of Si application on alleviating cadmium (Cd) toxicity and its possible mechanism. Treatments consist of four levels of Cd (0, 10, 50, and 100 mg·kg−1) with or without 2.0 mM Si amendments. Under Cd stress, Si application significantly increased plant biomass and Si content, reduced Cd content, and decreased the enrichment factor in shoots and roots. Si treatment also increased soil pH and soil residual Cd, while reducing available/oxidizable/reducible Cd content in soil at 50 and 100 mg·kg−1 Cd levels, thereby leading to a reduction of the soil’s available Cd. These findings indicate that Si application is effective in alleviating Cd phytotoxicity of Pennisetum, mainly through reducing plant Cd uptake and increasing soil pH and Cd immobilization, thereby reducing Cd bioavailability.

Keywords: amendment reduces; soil availability; silicon amendment; pennisetum; reduces soil; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2019

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.