LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Implementation of IoT-Based Air Quality Monitoring System for Investigating Particulate Matter (PM10) in Subway Tunnels

Photo from wikipedia

Air quality monitoring for subway tunnels in South Korea is a topic of great interest because more than 8 million passengers per day use the subway, which has a concentration… Click to show full abstract

Air quality monitoring for subway tunnels in South Korea is a topic of great interest because more than 8 million passengers per day use the subway, which has a concentration of particulate matter (PM10) greater than that of above ground. In this paper, an Internet of Things (IoT)-based air quality monitoring system, consisting of an air quality measurement device called Smart-Air, an IoT gateway, and a cloud computing web server, is presented to monitor the concentration of PM10 in subway tunnels. The goal of the system is to efficiently monitor air quality at any time and from anywhere by combining IoT and cloud computing technologies. This system was successfully implemented in Incheon’s subway tunnels to investigate levels of PM10. The concentration of particulate matter was greatest between the morning and afternoon rush hours. In addition, the residence time of PM10 increased as the depth of the monitoring location increased. During the experimentation period, the South Korean government implemented an air quality management system. An analysis was performed to follow up after implementation and assess how the change improved conditions. Based on the experiments, the system was efficient and effective at monitoring particulate matter for improving air quality in subway tunnels.

Keywords: air; subway tunnels; system; air quality

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2020

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.