LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Face Alignment in Thermal Infrared Images Using Cascaded Shape Regression

Photo from wikipedia

The evaluation of physiological and psychological states using thermal infrared images is based on the skin temperature of specific regions of interest, such as the nose, mouth, and cheeks. To… Click to show full abstract

The evaluation of physiological and psychological states using thermal infrared images is based on the skin temperature of specific regions of interest, such as the nose, mouth, and cheeks. To extract the skin temperature of the region of interest, face alignment in thermal infrared images is necessary. To date, the Active Appearance Model (AAM) has been used for face alignment in thermal infrared images. However, computation using this method is costly, and it has a low real-time performance. Conversely, face alignment of visible images using Cascaded Shape Regression (CSR) has been reported to have high real-time performance. However, no studies have been reported on face alignment in thermal infrared images using CSR. Therefore, the objective of this study was to verify the speed and robustness of face alignment in thermal infrared images using CSR. The results suggest that face alignment using CSR is more robust and computationally faster than AAM.

Keywords: alignment; thermal infrared; infrared images; face alignment; alignment thermal

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2021

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.