Fecal indicator bacteria (FIB) values are widely used to assess microbial contamination in drinking water and to advance the modeling of infectious disease risks. The membrane filtration (MF) testing technique… Click to show full abstract
Fecal indicator bacteria (FIB) values are widely used to assess microbial contamination in drinking water and to advance the modeling of infectious disease risks. The membrane filtration (MF) testing technique for FIB is widely adapted for use in low- and middle-income countries (LMICs). We conducted a systematic literature review on the use of MF-based FIB data in LMICs and summarized statistical methods from 172 articles. We then applied the commonly used statistical methods from the review on publicly available datasets to illustrate how data analysis methods affect FIB results and interpretation. Our findings indicate that standard methods for processing samples are not widely reported, the selection of statistical tests is rarely justified, and, depending on the application, statistical methods can change risk perception and present misleading results. These results raise concerns about the validity of FIB data collection, analysis, and presentation in LMICs. To improve evidence quality, we propose a FIB data reporting checklist to use as a reminder for researchers and practitioners.
               
Click one of the above tabs to view related content.