The characteristics or aspects of important fiducial points (FPs) in the electrocardiogram (ECG) signal are complicated because of various factors, such as non-stationary effects and low signal-to-noise ratio. Due to… Click to show full abstract
The characteristics or aspects of important fiducial points (FPs) in the electrocardiogram (ECG) signal are complicated because of various factors, such as non-stationary effects and low signal-to-noise ratio. Due to the various noises caused by the ECG signal measurement environment and by typical ECG signal deformation due to heart diseases, detecting such FPs becomes a challenging task. In this study, we introduce a novel PQRST complex detector using a one-dimensional bilateral filter (1DBF) and the temporal characteristics of FPs. The 1DBF with noise suppression and edge preservation preserves the P- or T-wave whereas it suppresses the QRS-interval. The 1DBF acts as a background predictor for predicting the background corresponding to the P- and T-waves and the remaining flat interval excluding the QRS-interval. The R-peak and QRS-interval are founded by the difference of the original ECG signal and the predicted background signal. Then, the Q- and S-points and the FPs related to the P- and T-wave are sequentially detected using the determined searching range and detection order based on the detected R-peak. The detection performance of the proposed method is analyzed through the MIT-BIH database (MIT-DB) and the QT database (QT-DB).
               
Click one of the above tabs to view related content.