LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

County-Wide Mortality Assessments Attributable to PM2.5 Emissions from Coal Consumption in Taiwan

Photo from wikipedia

Over one-third of energy is generated from coal consumption in Taiwan. In order to estimate the health impact assessment attributable to PM2.5 concentrations emitted from coal consumption in Taiwan. We… Click to show full abstract

Over one-third of energy is generated from coal consumption in Taiwan. In order to estimate the health impact assessment attributable to PM2.5 concentrations emitted from coal consumption in Taiwan. We applied a Gaussian trajectory transfer-coefficient model to obtain county-wide PM2.5 exposures from coal consumption, which includes coal-fired power plants and combined heat and power plants. Next, we calculated the mortality burden attributable to PM2.5 emitted by coal consumption using the comparative risk assessment framework developed by the Global Burden of Disease study. Based on county-level data, the average PM2.5 emissions from coal-fired plants in Taiwan was estimated at 2.03 ± 1.29 (range: 0.32–5.64) μg/m3. With PM2.5 increments greater than 0.1 μg/m3, there were as many as 16 counties and 66 air quality monitoring stations affected by coal-fired plants and 6 counties and 18 monitoring stations affected by combined heat and power plants. The maximum distances affected by coal-fired and combined heat and power plants were 272 km and 157 km, respectively. Our findings show that more counties were affected by coal-fired plants than by combined heat and power plants with significant increments of PM2.5 emissions. We estimated that 359.6 (95% CI: 334.8–384.9) annual adult deaths and 124.4 (95% CI: 116.4–132.3) annual premature deaths were attributable to PM2.5 emitted by coal-fired plants in Taiwan. Even in six counties without power plants, there were 75.8 (95% CI: 60.1–91.5) deaths and 25.8 (95%CI: 20.7–30.9) premature deaths annually attributable to PM2.5 emitted from neighboring coal-fired plants. This study presents a precise and effective integrated approach for assessing air pollution and the health impacts of coal-fired and combined heat and power plants.

Keywords: power plants; coal; coal fired; attributable pm2; coal consumption

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.