Water-soluble anions and suspended fine particles have negative impacts on ecosystems and human health, which is a current research hotspot. In this study, coastal suburb, coastal urban area, coastal tourist… Click to show full abstract
Water-soluble anions and suspended fine particles have negative impacts on ecosystems and human health, which is a current research hotspot. In this study, coastal suburb, coastal urban area, coastal tourist area, and coastal industrial area were explored to study the spatiotemporal variation and influencing factors of water-soluble anions and total suspended particles (TSP) in Zhanjiang atmosphere. In addition, on-site monitoring, laboratory testing, and analysis were used to identify the difference of each pollutant component at the sampling stations. The results showed that the average concentrations of Cl−, NO3−, SO42−, PO43−, and TSP were 29.8 μg/m3, 19.6 μg/m3, 45.6 μg/m3, 13.5 μg/m3, and 0.28 mg/m3, respectively. The concentration of Cl−, NO3−, PO43−, and atmospheric TSP were the highest in coastal urban area, while the concentration of SO42− was the highest in coastal industrial area. Moreover, there were significantly seasonal differences in the concentration of various pollutants (p < 0.05). Cl− and SO42− were high in summer, and NO3− and TSP were high in winter. Cl−, SO42−, PO43−, and TSP had significant correlations with meteorological elements (temperature, relative humidity, atmospheric pressure, and wind speed). Besides, the results showed the areas with the most serious air pollution were coastal urban area and coastal industrial area. Moreover, the exhaust emissions from vehicles, urban enterprise emissions, and seawater evaporation were responsible for the serious air pollution in coastal urban area. It provided baseline information for the coastal atmospheric environment quality in Zhanjiang coastal city, which was critical to the mitigation strategies for the emission sources of air pollutants in the future.
               
Click one of the above tabs to view related content.