LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Health Misinformation Detection in the Social Web: An Overview and a Data Science Approach

Photo by bruno_nascimento from unsplash

The increasing availability of online content these days raises several questions about effective access to information. In particular, the possibility for almost everyone to generate content with no traditional intermediary,… Click to show full abstract

The increasing availability of online content these days raises several questions about effective access to information. In particular, the possibility for almost everyone to generate content with no traditional intermediary, if on the one hand led to a process of “information democratization”, on the other hand, has negatively affected the genuineness of the information disseminated. This issue is particularly relevant when accessing health information, which impacts both the individual and societal level. Often, laypersons do not have sufficient health literacy when faced with the decision to rely or not rely on this information, and expert users cannot cope with such a large amount of content. For these reasons, there is a need to develop automated solutions that can assist both experts and non-experts in discerning between genuine and non-genuine health information. To make a contribution in this area, in this paper we proceed to the study and analysis of distinct groups of features and machine learning techniques that can be effective to assess misinformation in online health-related content, whether in the form of Web pages or social media content. To this aim, and for evaluation purposes, we consider several publicly available datasets that have only recently been generated for the assessment of health misinformation under different perspectives.

Keywords: information; health; health misinformation; misinformation detection; web

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.