Accurate air quality forecasts can provide data-driven supports for governmental departments to control air pollution and further protect the health of residents. However, existing air quality forecasting models mainly focus… Click to show full abstract
Accurate air quality forecasts can provide data-driven supports for governmental departments to control air pollution and further protect the health of residents. However, existing air quality forecasting models mainly focus on site-specific time series forecasts at a local level, and rarely consider the spatiotemporal relationships among regional monitoring stations. As a novelty, we construct a diffusion convolutional recurrent neural network (DCRNN) model that fully considers the influence of geographic distance and dominant wind direction on the regional variations in air quality through different combinations of directed and undirected graphs. The hourly fine particulate matter (PM2.5) and ozone data from 123 air quality monitoring stations in the Yangtze River Delta, China are used to evaluate the performance of the DCRNN model in the regional prediction of PM2.5 and ozone concentrations. Results show that the proposed DCRNN model outperforms the baseline models in prediction accuracy. Compared with the undirected graph model, the directed graph model considering the effects of wind direction performs better in 24 h predictions of pollutant concentrations. In addition, more accurate forecasts of both PM2.5 and ozone are found at a regional level where monitoring stations are distributed densely rather than sparsely. Therefore, the proposed model can assist environmental researchers to further improve the technologies of air quality forecasts and could also serve as tools for environmental policymakers to implement pollution control measures.
               
Click one of the above tabs to view related content.