LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Comparative Study of the SEM Evaluation, EDX Assessment, Morphometric Analysis, and Cyclic Fatigue Resistance of Three Novel Brands of NiTi Alloy Endodontic Files

Photo by matreding from unsplash

In this study, we compare and analyze the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), morphometry and cyclic fatigue resistance of Endogal, PathMax, and Smarttrack novel brands of nickel–titanium… Click to show full abstract

In this study, we compare and analyze the scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), morphometry and cyclic fatigue resistance of Endogal, PathMax, and Smarttrack novel brands of nickel–titanium (NiTi) alloy endodontic files. Material and Methods: Thirty sterile NiTi endodontic rotary files were randomly selected and assigned to one of the following study groups: A: 25.08 F2 Endogal (EDG) (n = 10); B: 25.08 F2 Path Max Pro (PMP) (n = 10); and C: 25.06 Smarttrack (ST) (n = 10). Dynamic cyclic fatigue tests were conducted using a cyclic fatigue device in stainless steel artificial root canal systems with an apical diameter of 250 µm, curvature angle of 60°, radius of curvature of 3 mm, and taper of 6%. Additionally, we analyzed the NiTi endodontic rotary files using EDX, SEM, and morphometry after micro-CT scanning. The results were analyzed using Weibull statistical analysis and ANOVA testing. Results: SEM, EDX, and morphometric analyses showed differences between the three novel brands of NiTi endodontic rotary files. Moreover, statistically significant differences were observed between the number of cycles to failure and time to failure of the three novel brands of NiTi endodontic rotary files (p < 0.001). Conclusions: Smarttrack NiTi alloy endodontic reciprocating files display greater resistance to cyclic fatigue than Endogal and Path Max Pro NiTi alloy endodontic rotary files, due to the reciprocating movement and metallurgical composition.

Keywords: fatigue; niti alloy; cyclic fatigue; novel brands; alloy endodontic; endodontic rotary

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.