LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Arsenic Release from Soil Induced by Microorganisms and Environmental Factors

Photo from wikipedia

In rhizospheric soil, arsenic can be activated by both biological and abiotic reactions with plant exudates or phosphates, but little is known about the relative contributions of these two pathways.… Click to show full abstract

In rhizospheric soil, arsenic can be activated by both biological and abiotic reactions with plant exudates or phosphates, but little is known about the relative contributions of these two pathways. The effects of microorganisms, low-molecular-weight organic acid salts (LMWOASs), and phosphates on the migration of As in unrestored and nano zero-valent iron (nZVI)-restored soil were studied in batch experiments. The results show that As released by microbial action accounted for 17.73%, 7.04%, 92.40%, 92.55%, and 96.68% of the total As released in unrestored soil with citrate, phytate, malate, lactate, and acetate, respectively. It was only suppressed in unrestored soil with oxalate. In restored soil, As was still released in the presence of oxalate, citrate, and phytate, but the magnitude of As release was inhibited by microorganisms. The application of excess nZVI can completely inhibited As release processes induced by phosphate in the presence of microorganisms. Microbial iron reduction is a possible mechanism of arsenic release induced by microorganisms. Microorganisms and most environmental factors promoted As release in unrestored soil, but the phenomenon was suppressed in restored soil. This study helps to provide an effective strategy for reducing the secondary release of As from soils due to replanting after restoration.

Keywords: induced microorganisms; arsenic release; environmental factors; microorganisms environmental; release; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.