LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Magnetic Nanoparticle-Based Dispersive Solid-Phase Microextraction of Three UV Blockers Prior to Their Determination by HPLC-DAD

Photo from wikipedia

The need for proper handling of environmental samples is significant, owing to their environmental effects on both humans and animals, as well as their immediate surroundings. In the current study,… Click to show full abstract

The need for proper handling of environmental samples is significant, owing to their environmental effects on both humans and animals, as well as their immediate surroundings. In the current study, magnetic nanoparticle-based dispersive solid-phase microextraction was combined with high-performance liquid chromatography using a diode array as the detector (HPLC-DAD) for both the separation and determination of three different UV blockers, namely octocrylene, ethylhexyl methoxycinnamate, and avobenzone. The optimum conditions for the extraction were found to be as follows: Stearic acid magnetic nanoparticles (20 mg) as the sorbent, acetonitrile (100 µL) as the eluent, as well as a sample pH of 2.50, adsorption and desorption time of 1.0 min, with a 3.0 mL sample volume. The limits of detection were as low as 0.05 µg mL−1. The coefficient of determination (R2) was above 0.9950, while the percentages of relative recoveries (%RR) were between 81.2 and 112% for the three UV blockers from the environmental water samples and sunscreen products.

Keywords: dispersive solid; magnetic nanoparticle; determination; solid phase; nanoparticle based; based dispersive

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.