LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of the Old-Age Dependency Ratio in Chinese Cities Using DMSP/OLS Nighttime Light Data

Photo from wikipedia

The old-age dependency ratio (ODR) is an important indicator reflecting the degree of a regional population’s aging. In the context of aging, this study provides a timely and effective method… Click to show full abstract

The old-age dependency ratio (ODR) is an important indicator reflecting the degree of a regional population’s aging. In the context of aging, this study provides a timely and effective method for predicting the ODR in Chinese cities. Using the provincial ODR from the Seventh National Population Census and Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime light data, this study aims to predict and analyze the spatial correlation of the municipal ODR in Chinese cities. First, the prediction model of the ODR was established with curve regression. Second, the spatial structure of the municipal ODR was investigated using the Moran’s I method. The experimental results show the following: (1) the correlation between the sum of the nighttime light and ODR is greater than the mean of nighttime light in the study areas; (2) the Sigmoid model fits better than other regression models using the provincial ODR in the past ten years; and (3) there exists an obvious spatial agglomeration and dependence on the municipal ODR. The findings indicate that it is reasonable to use nighttime light data to predict the municipal ODR in large and medium-sized cities. Our approach can provide support for future regional censuses and spatial simulations.

Keywords: nighttime light; light data; age dependency; dependency ratio; chinese cities; old age

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.