This study investigated the single-pass performance of a negative corona electrostatic precipitators (ESP) in removing suspended particulates (PM2.5 and PM10), formaldehyde (HCHO), and bioaerosols (bacteria and fungi) and measured the… Click to show full abstract
This study investigated the single-pass performance of a negative corona electrostatic precipitators (ESP) in removing suspended particulates (PM2.5 and PM10), formaldehyde (HCHO), and bioaerosols (bacteria and fungi) and measured the ozone (O3) concentration generated by ESP. The experimental results revealed that if the operational conditions for the ESP were set to high voltage (−10.5 kV) and low air flow rate (2.4 m3/min), ESP had optimal air pollutant removal efficiency. In the laboratory system, its PM2.5 and PM10 removal rates both reached 99% at optimal conditions, and its HCHO removal rate was 55%. In field tests, its PM2.5, PM10, HCHO, bacteria, and fungi removal rates reached 89%, 90%, 46%, 69%, and 85% respectively. The ESP in the laboratory system (−10.5 kV and 2.4 m3/min) generated 7.374 ppm of O3 under optimal conditions. Under the same operational conditions, O3 generated by ESP in the food waste storage room and the meeting room were 1.347 ppm and 1.749 ppm, respectively. The removal of HCHO and bioaerosols was primarily attributed to their destruction in the corona, as well as ozone oxidation, and collection on the dust collection plate.
               
Click one of the above tabs to view related content.