LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Estimation of Children’s Soil and Dust Ingestion Rates and Health Risk at E-Waste Dismantling Area

Photo by hush52 from unsplash

Due to environmental health concerns, exposure to heavy metals and related adverse effects in electronic waste (e-waste) dismantling areas have attracted considerable interest in the recent years. However, little information… Click to show full abstract

Due to environmental health concerns, exposure to heavy metals and related adverse effects in electronic waste (e-waste) dismantling areas have attracted considerable interest in the recent years. However, little information is available about the Soil/Dust Ingestion Rates (SIR) of heavy metals for children living in such sites. This study estimated the soil ingestion of 66 children from e-waste disassembly areas by collecting and analyzing selected tracer elements in matched samples of their consumed food, feces, and urine, as well as soil samples from their play areas. The concentrations of tracer elements (including Al, Ba, Ce, Mn, Sc, Ti, Y, and V) in these samples were analyzed. The SIR was estimated to be 148.3 mg/day (median) and 383.3 mg/day (95th percentile) based on the Best Tracer Method (BTM). These values are somewhat higher than those observed in America, Canada, and other parts of China. Health risk assessments showed that Cr presented the greatest carcinogenic risk, at more than 10−6 in this typical polluted area, while As was second. These findings provide important insights into the exposure risks of heavy metals in e-waste dismantling sites and emphasize the health risk caused by Cr and As.

Keywords: health; health risk; waste; waste dismantling; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.