LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Determination of Critical Power Using Different Possible Approaches among Endurance Athletes: A Review

Photo from wikipedia

Critical power represents an important parameter of aerobic function and is the highest average effort that can be sustained for a period of time without fatigue. Critical power is determined… Click to show full abstract

Critical power represents an important parameter of aerobic function and is the highest average effort that can be sustained for a period of time without fatigue. Critical power is determined mainly in the laboratory. Many different approaches have been applied in testing methods, and it is a difficult task to determine which testing protocol it the most suitable. This review aims to evaluate all possible tests on bicycle ergometers or bicycles used to estimate critical power and to compare them. A literature search was conducted in four databases (PubMed, Scopus, SPORTDiscus, and Web of Science) published from 2012 to 2022 and followed the PRISMA guidelines to process the review. Twenty-one articles met the eligibility criteria: records with trained or experienced endurance athletes (adults > 18), bicycle ergometer, a description of the testing protocol, and comparison of the tests. We found that the most widely used tests were the 3-min all-out tests set in a linear mode and the traditional protocol time to exhaustion. Some other alternatives could have been used but were not as regular. To summarize, the testing methods offered two main approaches in the laboratory (time to exhaustion test andthe 3-min all-out test with different protocols) and approach in the field, which is not yet completely standardized.

Keywords: determination critical; endurance athletes; power; power using; critical power

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.