The aim of the study was to evaluate whether the most common polymorphisms in the IL-6 and HSP70 genes affect the circulating heat shock protein 70 (HSP70), as well as… Click to show full abstract
The aim of the study was to evaluate whether the most common polymorphisms in the IL-6 and HSP70 genes affect the circulating heat shock protein 70 (HSP70), as well as inflammatory and prooxidant-antioxidant parameters in healthy men undergoing chronic endurance training. The subjects were randomly assigned to a 12-week swimming training (ST group) or control group (CON). Fasting blood samples were collected pre- and post-study period to assessment: superoxide dismutase (SOD) and glutathione peroxidase (GPx) activities, serum levels of lipid hydroperoxides (LHs), tumor necrosis factor α (TNFα), and HSP70. Subjects were genotyped for IL-6-174G/C, HSPA1A + 190 G/C and HSPA1B + 1538 A/G single nucleotide polymorphisms (SNPs) by real-time PCR. After a 12-week study period, a decrease in TNFα, HSP70, and GPx was observed in the ST group, but not the CON group. IL-6 SNP affected serum TNFα levels (main effect of genotype). Higher TNFα levels (pre- and post-study period) was observed in CC CON than in other IL-6 genotypes of CON and ST groups. However, a post-training decrease in TNFα was observed in both GG and CC IL-6 genotypes of ST group. In turn, only GG IL-6 genotype of the ST group was related to a post-training decrease in HSP70 (main time and genotype interaction). Moreover, pre- and post-training LHs were lower in GG than GC/CC HSPA1A genotypes of the ST group (main genotype effect). In conclusion, polymorphisms within the IL-6 and HSPA1A genes seem to affect baseline levels of some inflammatory parameters and prooxidant-antioxidant status and/or their changes after chronic swimming training. However, the results should be confirmed in a study with a larger sample size, one that includes individuals with sedentary lifestyles.
               
Click one of the above tabs to view related content.