City planners are increasingly drawn to ways of transforming urban spatial structure as an important strategy for reducing pollutant emissions. As its main contribution, this paper uses firm-level emissions data… Click to show full abstract
City planners are increasingly drawn to ways of transforming urban spatial structure as an important strategy for reducing pollutant emissions. As its main contribution, this paper uses firm-level emissions data to quantify impact mechanisms related to factor flow, firm size, and division of labour. We examine the effects of spatial polycentricity on firm-level industrial emissions, using a pooled cross-sectional model, based on emissions data from individual firms in China. We show that, all else being equal, polycentric spatial structures help to reduce the emissions of industrial firms. This finding is not affected by index measures, changes in industrial structure, or city-sample selection. A mechanism analysis shows that polycentric structures not only enhance the emission-reduction effects of factor flow and firm size, but also reduce firm-level emissions by strengthening the urban division of labour. Our findings support the emission-reduction performance of polycentric spatial structures, promoting the integration of city planning and industrial policies that jointly contribute to reducing firm-level emissions and preventing and controlling air pollution.
               
Click one of the above tabs to view related content.