LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of Models to Estimate Total Soil Carbon across Different Croplands at a Regional Scale Using RGB Photography

Photo from wikipedia

A quick, accurate and cost-effective method for estimating total soil carbon is necessary for monitoring its levels due to its environmentally and agronomically irreplaceable importance. There are several impediments to… Click to show full abstract

A quick, accurate and cost-effective method for estimating total soil carbon is necessary for monitoring its levels due to its environmentally and agronomically irreplaceable importance. There are several impediments to both laboratory analysis and spectroscopic sensor technology because the former is both expensive and time-consuming whereas the initial cost of the latter is too high for farmers to afford. RGB photography obtained from digital cameras could be used to quickly and cheaply estimate the total carbon (TC) content of the soil. In this study, we developed models to predict soil TC contents across different cropland types including paddy, upland and orchard fields as well as the TC content of the soil combined from all the aforementioned cropland types on a regional scale. Soil colour measurements were made on samples from the Chungcheongnam-do province of South Korea. The soil TC content ranged from 0.045% to 6.297%. Modelling was performed using multiple linear regression considering the soil moisture levels and illuminance. The best soil TC prediction model came from the upland soil and gave training and validation r2 values of 0.536 and 0.591 with RMSE values of 0.712% and 0.441%, respectively. However, the most accurate equation is the one that produces the lowest RMSE value. Hence, although the model for the upland soil was the most stable of all, the paddy soil model which gave training and validation r2 values of 0.531 and 0.554 with RMSE values of 0.240% and 0.199%, respectively, was selected as the best soil TC prediction equation of all due to its comparatively high r2 value and the lowest RMSE of all equations.

Keywords: soil carbon; estimate total; carbon; rgb photography; total soil; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.