LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Soil Pore Network Complexity Changes Induced by Wetting and Drying Cycles—A Study Using X-ray Microtomography and 3D Multifractal Analyses

Photo from wikipedia

Soils are dynamic and complex systems in their natural state, which are subjected to profound changes due to management. Additionally, agricultural soils are continuously exposed to wetting and drying (W-D)… Click to show full abstract

Soils are dynamic and complex systems in their natural state, which are subjected to profound changes due to management. Additionally, agricultural soils are continuously exposed to wetting and drying (W-D) cycles, which can cause modifications in the complexity of their pores. Thus, we explore how successive W-D cycles can affect the pore network of an Oxisol under contrasting managements (conventional tillage—CT, minimum tillage—MT, no tillage—NT, and secondary forest—F). The complexity of the soil pore architecture was evaluated using a 3D multifractal approach combined with lacunarity, Shannon’s entropy, and pore geometric parameters. Our results showed that the multifractal approach effectively identified and quantified the changes produced in the soil pore architecture by the W-D cycles. The lacunarity curves revealed important aspects of the modifications generated by these cycles. Samples under F, NT, and MT suffered the most significant changes. Pore connectivity and tortuosity were largely affected by the cycles in F and NT. Our findings demonstrated that the 3D geometric parameters and normalized Shannon’s entropy are complementary types of analysis. According to the adopted management, they allowed us to separate the soil into two groups according to their similarities (F and NT; CT and MT).

Keywords: drying cycles; wetting drying; soil pore; pore; complexity; soil

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.