LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Shifts of Antibiotic Resistomes in Soil Following Amendments of Antibiotics-Contained Dairy Manure

Photo by gabrielj_photography from unsplash

Dairy manure is a nutrition source for cropland soils and also simultaneously serves as a contamination source of antibiotic resistance genes (ARGs). In this study, five classes of antibiotics including… Click to show full abstract

Dairy manure is a nutrition source for cropland soils and also simultaneously serves as a contamination source of antibiotic resistance genes (ARGs). In this study, five classes of antibiotics including aminoglycosides, beta-lactams, macrolides, sulfonamides, and tetracyclines, were spiked in dairy manure and incubated with soil for 60 days. The high throughput qPCR and 16S rRNA amplicon sequencing were used to detect temporal shifts of the soil antibiotic resistomes and bacterial community. Results indicated dairy manure application increased the ARG abundance by 0.5–3.7 times and subtype numbers by 2.7–3.7 times and changed the microbial community structure in soils. These effects were limited to the early incubation stage. Selection pressure was observed after the addition of sulfonamides. Bacterial communities played an important role in the shifts of ARG profiles and accounted for 44.9% of the resistome variation. The incubation period, but not the different antibiotic treatments, has a strong impact on the bacteria community. Firmicutes and Bacteroidetes were the dominant bacterial hosts for individual ARGs. This study advanced our understanding of the effect of dairy manure and antibiotics on the antibiotic resistome in soils and provided a reference for controlling ARG dissemination from dairy farms to the environment.

Keywords: resistomes soil; manure; shifts antibiotic; antibiotic resistomes; dairy manure

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.