LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Prediction of Duration of Traffic Incidents by Hybrid Deep Learning Based on Multi-Source Incomplete Data

Photo from wikipedia

Traffic accidents causing nonrecurrent congestion and road traffic injuries seriously affect public safety. It is helpful for traffic operation and management to predict the duration of traffic incidents. Most of… Click to show full abstract

Traffic accidents causing nonrecurrent congestion and road traffic injuries seriously affect public safety. It is helpful for traffic operation and management to predict the duration of traffic incidents. Most of the previous studies have been in a certain area with a single data source. This paper proposes a hybrid deep learning model based on multi-source incomplete data to predict the duration of countrywide traffic incidents in the U.S. The text data from the natural language description in the model were parsed by the latent Dirichlet allocation (LDA) topic model and input into the bidirectional long short-term memory (Bi-LSTM) and long short-term memory (LSTM) hybrid network together with sensor data for training. Compared with the four benchmark models and three state-of-the-art algorithms, the RMSE and MAE of the proposed method were the lowest. At the same time, the proposed model performed best for durations between 20 and 70 min. Finally, the data acquisition was defined as three phases, and a phased sequential prediction model was proposed under the condition of incomplete data. The results show that the model performance was better with the update of variables.

Keywords: traffic incidents; incomplete data; traffic; source; model; duration

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.