LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Deep Mobile Linguistic Therapy for Patients with ASD

Photo by finnnyc from unsplash

Autistic spectrum disorder (ASD) is one of the most complex groups of neurobehavioral and developmental conditions. The reason is the presence of three different impaired domains, such as social interaction,… Click to show full abstract

Autistic spectrum disorder (ASD) is one of the most complex groups of neurobehavioral and developmental conditions. The reason is the presence of three different impaired domains, such as social interaction, communication, and restricted repetitive behaviors. Some children with ASD may not be able to communicate using language or speech. Many experts propose that continued therapy in the form of software training in this area might help to bring improvement. In this work, we propose a design of software speech therapy system for ASD. We combined different devices, technologies, and features with techniques of home rehabilitation. We used TensorFlow for Image Classification, ArKit for Text-to-Speech, Cloud Database, Binary Search, Natural Language Processing, Dataset of Sentences, and Dataset of Images with two different Operating Systems designed for Smart Mobile devices in daily life. This software is a combination of different Deep Learning Technologies and makes Human–Computer Interaction Therapy very easy to conduct. In addition, we explain the way these were connected and put to work together. Additionally, we explain in detail the architecture of software and how each component works together as an integrated Therapy System. Finally, it allows the patient with ASD to perform the therapy anytime and everywhere, as well as transmitting information to a medical specialist.

Keywords: software; deep mobile; therapy patients; therapy; mobile linguistic; linguistic therapy

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.