LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Development of an Artificial Intelligence Model for Analyzing the Relationship between Imaging Features and Glucocorticoid Sensitivity in Idiopathic Interstitial Pneumonia

Photo by maximalfocus from unsplash

High-resolution CT (HRCT) imaging features of idiopathic interstitial pneumonia (IIP) patients are related to glucocorticoid sensitivity. This study aimed to develop an artificial intelligence model to assess glucocorticoid efficacy according… Click to show full abstract

High-resolution CT (HRCT) imaging features of idiopathic interstitial pneumonia (IIP) patients are related to glucocorticoid sensitivity. This study aimed to develop an artificial intelligence model to assess glucocorticoid efficacy according to the HRCT imaging features of IIP. The medical records and chest HRCT images of 150 patients with IIP were analyzed retrospectively. The U-net framework was used to create a model for recognizing different imaging features, including ground glass opacities, reticulations, honeycombing, and consolidations. Then, the area ratio of those imaging features was calculated automatically. Forty-five patients were treated with glucocorticoids, and according to the drug efficacy, they were divided into a glucocorticoid-sensitive group and a glucocorticoid-insensitive group. Models assessing the correlation between imaging features and glucocorticoid sensitivity were established using the k-nearest neighbor (KNN) algorithm. The total accuracy (ACC) and mean intersection over union (mIoU) of the U-net model were 0.9755 and 0.4296, respectively. Out of the 45 patients treated with glucocorticoids, 34 and 11 were placed in the glucocorticoid-sensitive and glucocorticoid-insensitive groups, respectively. The KNN-based model had an accuracy of 0.82. An artificial intelligence model was successfully developed for recognizing different imaging features of IIP and a preliminary model for assessing the correlation between imaging features and glucocorticoid sensitivity in IIP patients was established.

Keywords: imaging features; glucocorticoid sensitivity; artificial intelligence; model; intelligence model

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.