LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Evaluation of Empirical and Machine Learning Approaches for Estimating Monthly Reference Evapotranspiration with Limited Meteorological Data in the Jialing River Basin, China

Photo from wikipedia

The accurate estimation of reference evapotranspiration (ET0) is crucial for water resource management and crop water requirements. This study aims to develop an efficient and accurate model to estimate the… Click to show full abstract

The accurate estimation of reference evapotranspiration (ET0) is crucial for water resource management and crop water requirements. This study aims to develop an efficient and accurate model to estimate the monthly ET0 in the Jialing River Basin, China. For this purpose, a relevance vector machine, complex extreme learning machine (C-ELM), extremely randomized trees, and four empirical equations were developed. Monthly climatic data including mean air temperature, solar radiation, relative humidity, and wind speed from 1964 to 2014 were used as inputs for modeling. A total comparison was made between all constructed models using four statistical indicators, i.e., the coefficient of determination (R2), Nash efficiency coefficient (NSE), root mean square error (RMSE) and mean absolute error (MAE). The outcome of this study revealed that the Hargreaves equation (R2 = 0.982, NSE = 0.957, RMSE = 7.047 mm month−1, MAE = 5.946 mm month−1) had better performance than the other empirical equations. All machine learning models generally outperformed the studied empirical equations. The C-ELM model (R2 = 0.995, NSE = 0.995, RMSE = 2.517 mm month−1, MAE = 1.966 mm month−1) had the most accurate estimates among all generated models and can be recommended for monthly ET0 estimation in the Jialing River Basin, China.

Keywords: machine; river basin; basin china; jialing river

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.