LAUSR.org creates dashboard-style pages of related content for over 1.5 million academic articles. Sign Up to like articles & get recommendations!

Enhancing Methane Recovery with Cryogenic Liquid CO2 Cyclic Injection: Determination of Cyclic Injection Parameters

Photo by mbaumi from unsplash

Carbon dioxide (CO2) is both a primary greenhouse gas and a readily available energy source. In this study, a new underground coal permeability enhancement technique utilizing cryogenic liquid CO2 (L-CO2)… Click to show full abstract

Carbon dioxide (CO2) is both a primary greenhouse gas and a readily available energy source. In this study, a new underground coal permeability enhancement technique utilizing cryogenic liquid CO2 (L-CO2) cyclic injection is proposed. The key parameters that determine the feasibility of this technique are cycle period and cycle number within a fixed working period. The optimal value of these two parameters mainly depends on the pore structure evolution law of coal cores before and after cryogenic L-CO2 cyclic freeze–thaw. Accordingly, nuclear magnetic resonance (NMR) was employed to study the evolution characteristics of the fracture networks and pore structures in coal cores subjected to different freeze–thaw cyclic modes. The results demonstrated that the amplitude and width of all peaks of the T2 spectra of the three coal cores (lignite, gas coal, and 1/3 coking coal) increased with an increase in the number of injection cycles. Additionally, as the number of freeze–thaw cycles (Nc) increased, the total porosity and effective porosity of the coal cores increased linearly before stabilizing, while the residual porosity first steadily diminished and afterwards became constant. Furthermore, the variation in the total porosity and residual porosity of the coal cores continuously diminished with an increase in the level of metamorphism. The NMR permeability of the coal cores showed a similar pattern to the porosity. Accordingly, the optimal parameters for cryogenic L-CO2 cyclic injection during a complete working time were determined to be Nc = 4 and Pc = 30 min. A field test demonstrated that after L-CO2 cyclic freeze–thaw treatment, the average gas drainage concentration of a single borehole in the test region increased by 1.93 times, while the pure flow of a single gas drainage borehole increased by 2.21 times. Finally, the gas attenuation coefficient decreased from 0.036 to 0.012. We concluded that the proposed permeability enhancement technique transformed coal seams from hard-to-drain to drainable.

Keywords: injection; cyclic injection; coal; co2 cyclic; coal cores; porosity

Journal Title: International Journal of Environmental Research and Public Health
Year Published: 2022

Link to full text (if available)


Share on Social Media:                               Sign Up to like & get
recommendations!

Related content

More Information              News              Social Media              Video              Recommended



                Click one of the above tabs to view related content.